
CUSTOMIZED TTA PROCESSOR FOR EFFICIENT IMPLEMENTATION OF VARIABLE
LENGTH FFT IN SDR SYSTEMS

Tomasz Patyk, David Guevorkian, Teemu Pitkänen, and Jarmo Takala

Department of Computer Systems, Tampere University of Technology,
P.O. Box 527, FI-33101 Tampere, Finland, e-mail: name.surname@tut.fi

ABSTRACT

In this paper, we describe a processor architecture tailored to
mixed-radix-4/2/3 FFT algorithm. The proposed design sup-
ports FFT sizes 64 − 2048/1536 needed in different radios
such as WLAN, LTE, DVB, etc. Thus different radios of a
SDR system may use the same FFT implementation. The
processor is based on the Transport Triggered Architecture
(TTA) processor structure customized with a set of functional
units. Those units were designed especially for the applica-
tion at hand, that is, for radix-2/3/4 FFT butterfly operations.
The proposed processor has been synthesized on a 130 nm
standard cell ASIC technology. Efficiency analysis illustrates
that, while the developed processor is programmable, its ef-
ficiency is comparable to that of fixed-function ASIC imple-
mentations.

Index Terms— Fast Fourier Transform (FFT), Long-
Term Evolution (LTE), Application Specific Integrated Cir-
cuit (ASIC), Parallel Architectures, Software-defined Radio
(SDR), Transport-Triggered Architecture (TTA),

1. INTRODUCTION

Very high computational demands of digital radio systems
require efficient, customized implementations of the algo-
rithms most frequently implemented in those systems. Typ-
ically, specialized hardware (HW) architectures have been
used to achieve the needed efficiency. A software-defined
radio (SDR) assumes flexible, programmable implementa-
tions of several radios sharing the same HW resources, which
therefore, cannot be optimized for a single algorithm or a
particular radio. This brings even higher demand for the
computational power. At the same time, the design should be
really low-power and low-cost to be useful, since, the main
target devices are portable consumer electronics, such as,
mobile-(smart-)phones, laptops, etc.

In order to support such tight requirements, the design
of SDR platforms should consider optimization of both
the HW and software (SW) components. In other words,
efficient HW/SW co-design approaches may significantly
improve performance of SDR platforms. One of the most
advanced HW/SW co-design approaches is provided by

Transport-Triggered Architecture (TTA) [1] processor tem-
plate supported by TTA-based Co-design Environment (TCE)
toolchain [2]. It is, therefore, of high interest to use the TTA-
TCE co-design framework to design application-customized
processors for efficient implementation of SDR algorithms.

One of the most often implemented and, at the same time,
computationally demanding algorithms in practically every
radio system, is the Discrete Fourier Transform (DFT). In-
terest towards efficient implementation of the DFT started in
1965 from the famous Cooley-Tukey Fast Fourier Transform
(FFT) algorithm presented in [3]. Still, after almost half a
century, this interest remains very high due to the fundamen-
tal, useful properties of the DFT. in particular, the application
in the Long Term Evolution (LTE) [13] wireless communica-
tion standard. Those technologies require very efficient im-
plementations of the FFT in order to support extremely tight,
mutually contradicting constraints such as real-time process-
ing requirements on top of the low-power, low-cost, and flex-
ible HW platforms. However, the main difference, in com-
parison to FFT implementations in other fields, is related to
the necessity to support efficiency of the same platform to im-
plement DFTs of multiple sizes. Those sizes, not necessarily
need to be powers of two.

For example, in LTE, computation of a DFT of series
of orthogonal frequency-division multiplexing (OFDM)
symbols is needed [13] with the speed of 66.67µs per
symbol. Each symbol is a N -length vector of complex
numbers, where N may take one of the following values:
N = 128, 256, 512, 1024, 1536, or 2048 [13]. In a SDR
system, SW implementation of several radios, one of them
typically being LTE, should be supported on top of a shared
HW platform [14]. Therefore, in SDR, even wider range
of FFT sizes need to be supported under even tighter re-
quirements. Thus, there is a great demand for efficient, very
high-speed programmable implementation of FFTs of various
sizes, including the sizes that are not powers of two.

There is a vast amount of different implementations of
FFT, e.g., [4]–[12] to mention only few most recent publi-
cations related to communication applications. In particular,
mixed-radix-4/2 [4]–[9], and mixed-radix-4/2/3 [10] variable
length FFT implementations were proposed. In most of the
publications, either dedicated (fixed-or-reconfigurable) FFT

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

239

F4m2n3l =

[(
F3⊗I lN

3

)
TNlN

3

]
I3⊗

{(
F2 ⊗ I N

2·3

)
T

N
3
N
2·3

[m∏
i=1

(
I2k ⊗ I4i−1 ⊗ F4 ⊗ I4i−1

)(
I2k ⊗ I4i−1 ⊗ T 4m−i+1

4m−i

)]}
R4m2n3l

(1)

HW architectures [6]–[10] or SW FFT implementations on
existing processor architectures, [11]–[12] are proposed.

Conventionally, HW implementations are thought to pro-
vide better performance but poor flexibility while the SW im-
plementations are thought to provide high flexibility but poor
performance. However, recently, it has been shown that pro-
grammable FFT implementations with performances compa-
rable to that of fixed HW implementations may be achieved
by making use of HW/SW co-design methodology provided
by TTA-based Co-design Environment (TCE) technology [2].
Using this technology, new customized TTA processor ar-
chitectures were proposed and Assembly implementations of
mixed-radix-4/2 FFTs were developed in [4], [5]. The re-
sulting implementations illustrate execution time and power
consumption performance similar to those of fixed FFT HW
accelerators. Unfortunately, implementations of [4], [5] con-
sider only FFT of sizes N = 4m2n being powers of two.

In this work, we further develop this approach and pro-
pose a new, customized Transport Triggered Architecture
(TTA) processor for programmable implementation of mixed-
radix-4/2/3 FFTs of sizes N = 4m2n3l. Thus, in particular,
FFTs of all the sizes needed in LTE, 128 − 2048/1536, are
supported. Compared to processors presented in [4], [5], the
proposed architecture achieves not only higher flexibility, by
supporting FFT sizes being a multiple of 3, but also further
improves the performance due to the optimization of the pre-
vious designs. In particular, modified functional units for
twiddle factor generation and operand address generation,
feature shorter critical paths, thus, allowing synthesize of the
processor for higher frequencies.

The rest of the paper is organized as follows. Section 2
explains details of the FFT algorithm used in this work. Sec-
tion 3 presents some features of the TTA processor archi-
tecture, while Section 4 specifies the implementation of the
mixed-radix-4/2/3 FFT TTA processor. Section 5 discusses
results of the timing and area analysis conducted on the de-
sign. Finally, Section 6 concludes the paper.

2. FFT ALGORITHM

The DFT of an input vector x = [x0, x1, ..., xN−1]
T is de-

fined as the vector y = [y0, y1, ..., yN−1]
T such that:

ym =

N−1∑
n=0

Wnm
N xn, (2)

or equivalently:
y = FNx, (3)

where FN is the (N ×N)-matrix of DFT with entries:

Wnm
N = exp− i2πnm

N
. (4)

Many Fast Fourier Transform (FFT) algorithms were de-
veloped for efficient computation of the DFT. In this paper,
we are using the in-place, decimation-in-time (DIT), mixed-
radix-4/2/3 algorithm with permuted input, and in-order out-
put. The formula for our FFT algorithm of size N = 4m2n3l,
where m ∈ N0, n ∈ N0, and l = 0, 1, is given by (1). The
following notations were used in this formula:

F2 =

(
1 1
1 −1

)
, (5)

F3 =

1 1 1

1 W
N
3

N W
2N
3

N

1 W
2N
3

N W
N
3

N

 , (6)

F4 =

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 , (7)

where Wm
N = ei2π

m
N and:

W
N
3

N = −1

2
− i
√
3

2
, (8)

W
2N
3

N = −1

2
+ i

√
3

2
, (9)

W
N
3

N =
(
W

2N
3

N

)∗
. (10)

IN stands for an identity matrix of order N and ⊗ de-
notes a tensor product. T matrices, holding twiddle factors
for the corresponding radix-4, radix-2, and radix-3 computa-
tion stages, are obtained with:

T rss = ⊕r−1
i=0 (D

rs
s)i, (11)

Drs
s = diag(W 0

s ,W
1
s , . . . ,W

s−1
s), (12)

where ⊕ denotes a matrix direct sum. Finally, R4m2n3l is
an input permutation matrix based on the stride-by-S permu-
tation matrices P of order N , and is given by the formula:

R4m2n3l =

{
I3l⊗

[
I2n⊗

(m∏
i=1

I4m−i ⊗ P 4m

4

)]}
PN3l . (13)

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

240

With the formula (1), a DFT of an input vector of size
N = 4m2n3l can be computed in n +m + l stages as illus-
trated in Fig. 1 for the case of N = 24 = 412131. Each stage
consists of two substages. In the first substage, multiplication
of a diagonal matrix to the vector of intermediate results is
performed. This, in fact means multiplying so called twid-
dle factors (powers of WN = exp− i2πN) with the inputs to
the stage. Note that all the twiddle factors of the first stage
are equal to unity and, therefore, are not shown in Fig. 1.
The second substage is a multiplication of a sparse matrix to
the vector of intermediate results obtained after first substage.
Each sparse matrix is presented as a Kronecker product and
may, by row and column permutations, be transformed to a
block-diagonal matrix with N/r blocks being DFTs of size r,
where r = 4 for the firstm stages, r = 2 for the next n stages,
and r = 3 for the last l stages (l = 0, 1). Multiplying such
matrix to a vector means implementing N/r so called radix-r
butterfly operations.

Properties of the employed representation (1) release cer-
tain benefits as compared to the other approaches of comput-
ing the DFT. We took advantage of them while implementing
our processor. In particular, an in-place algorithm ensures that
the size of the data memory used, can be limited to the maxi-
mum size of the FFT that the processor supports. This is es-
pecially important in the embedded applications. The chosen
order of the different radix stages, as well as, the use of the in-
order output rather than in-order input algorithm, simplified
some of the functional units of the processor. The operand
address generator, and twiddle factor generators, described in
more details in Section 4.2, are build up from fewer gates
performing less switching activity compared to [4], [5]. This
should lead to the decrease of both static and dynamic power
consumption.

3. TRANSPORT TRIGGERED ARCHITECTURE

The proposed processor is based on the Transport Trigger Ar-
chitecture (TTA) [1] processor template. The TTA falls into
the category of statically programmed instruction-level par-
allelism (ILP) architectures. It belongs to the class of the ex-
posed data path, Very Long Instruction Word (VLIW) proces-
sor architectures, where the details of the data path transfers
are disclosed to the software designer. This can be benefited
twofolds by: allowing unique optimizations in the code; and
the customization of the data path interconnection network.

The TTA processor is a modular design including a set
of register files (RF), functional units (FU), a control unit,
and an interconnection network (IC) between the data path
resources. The programming model of the TTA differs when
compared to the general purpose processor architectures, e.g.,
RISC or CISC, where instructions are decoded into control
signals which initialize the operations. Instead, TTA instruc-
tions specify data moves in the IC. Data are written into the
input ports, and read out of the output ports of the processor

0
6
12

18

F
4

3

9

15

21

F
4

1

7

13
F
4

F
4

19

4
10

16

22

14
F
4

F
4

20

5
11

17
23

2

8

F
2

F
2

F
2

F
2

F
2

F
2

F
2

F
2

F
2

F
2

F
2

F
2

1

2

3

1

2

3

1

2

3

F
3

F
3

F
3

F
3

F
3

F
3

F
3

F
3

3

1

3

2

2

4

3

6

4

8

5

10

6

12

7

14

0
1
2

3
4

5

6

7
8

9

10

11

12
13

14

15

18

19

20
21

22
23

16

17

s=0 s=1 s=2

Fig. 1. Signal flow graph of a 24-point mixed-radix FFT. Con-
stant k in the signal flow graph represents the twiddle factor
W k
N , where N = 8 for the radix-2 stage, and N = 24 for the

radix-3 stage.

units. Each unit has a single triggering input port, which trig-
gers the operation of that unit, whenever data is written into
it. Therefore, the operations of the processor can be seen as
a “side effect” of the data transports. If the inputs of the FU
are registered, a set of operations can be performed on the
same set of input data, by triggering the unit with different
opcodes. Sharing the operands between different operations
of the FU reduces data traffic over the IC, and the need for
temporal storage in the RFs or data memory.

It can be shown that the modular nature of the TTA ar-
chitecture can be exploited for reduction of the power con-
sumption, as well as custom optimization for speed or area.
Firstly, the processor structure can be tailored specifically to
fit the application it is designed for. Removing unnecessary
resources, e.g., FUs, and connection sockets from the IC, re-
duces the static power consumption due to the reduced gate
count. Secondly, one can include in the processor design spe-
cial function units (SFUs) with the user-defined functional-
ity. Those units can not only perform application-specific task
more power-efficiently but also reduce the number of neces-
sary data moves over the IC. SFUs also let to reduce the in-
struction overhead, thus, they reduce the power consumption
due to the instruction fetch. In general, dynamic power con-
sumption reduction can be obtained. The speed or area op-
timization can be obtained by adding/removing resources to
the processor. One can add more resources to improve perfor-
mance by exploiting ILP. Leaving only necessary resources
will reduce the silicon area the processor takes to minimum.
A trade-off between speed and area can be worked out accord-
ing, e.g. to requirements. In this work, we have used several

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

241

custom-designed units tailored for the FFT application, which
guarantee a trade-off between execution time, area, and power
consumption of the processor.

4. PROCESSOR ORGANIZATION

The work presented in this paper modifies and extends the
mixed-radix-4/2 FFT TTA processor presented in [4] and [5].

4.1. Mixed-radix-4/2 FFT TTA

The processor described in [4] and [5] implements the in-
place, DIT, in-order input, mixed-radix-4/2 FFT algorithm.
The processor supports FFT sizes in the range of 64− 16384.
It calculates the FFT with several radix-4 stages, followed by
a single radix-2 stage when the FFT size is not a power-of-
four. Since the FFT is inherently a complex-valued algorithm,
the 32-bit word was adopted to represent the complex num-
bers, where 16 most significant bits hold the real part, and 16
least significant bits hold the imaginary part. Appropriate,
arithmetic special function units were designed to perform
the complex multiplication and addition, required by the DIT
radix-2 and radix-4 butterflies.

Indexing of the input data for every stage of the FFT com-
putations can be represented by a permutation matrix [15].
However, instead of using generic arithmetic units to calcu-
late the indexes, one can perform index manipulations on the
bit-level. This proved to be a low-power solution and was
implemented as a special function unit as well. Yet another
low-power solution was called a twiddle factor (TF) genera-
tor. In principle, the generator exploits the redundancy among
TFs. Instead of storing all the required TFs in a look-up table,
only 1/8 + 1 of them is kept in the memory, while the rest is
generated by modifying the stored ones.

4.2. Mixed-radix-4/2/3 FFT TTA

Considering FFT sizes required by the LTE standard, the
processor presented in Section 4.1 supports them all, with
the exception of 1536-point FFT. The proposed design sup-
ports also this case. Out of several different mixed-radix
decomposition possibilities, we chose the mixed-radix-4/2/3
DIT, in-place algorithm with in-order output. There were
two reasons behind this choice: 1) the maximum possible
utilization of the existing mixed-radix-4/2 processor; and 2)
simple implementation of radix-3 SFUs. Still, the latter one
was not an obvious choice. In general, radix-3 stage operand
index and TF calculations can be done in a simple manner if
the ternary number system is used. In the binary system, on
the other hand, bit-level operations are not possible. How-
ever, if we decompose a 1536-point FFT into three 512-point
FFTs followed by a single radix-3 stage, the operand address
and twiddle factor generators for radix-3 stage can be imple-
mented with bit-level operations. The three 512-point FFTs

can be computed by the modified, mixed-radix-4/2 processor
, introduced in Sec. 4.1. Following paragraphs list SFUs that
our processor consists of, as well as, the general organization
of the design.

A. Mixed-radix-4/2 Operand Access Generator

The Mixed-radix-4/2 Operand Access Generator is a modi-
fied design of the Address Generator (AG) presented in [4].
The main principle, of rotating the address of the operand
to be fetched from the data memory, still applies. However,
since the FFT algorithm has changed from in-order input to
in-order output, the unit had to be updated to the new order
of operand access.

B. Mixed-radix-4/2 Twiddle Factor Generator

The Mixed-radix-4/2 Twiddle Factor Generator is yet an-
other SFU which has been adopted from the [4] design. It
rests on the foundation shown in [16], that proves, that the
twiddle factors for mixed-radix-4/2 can be generated from
N/8 + 1 of the all coefficients simply by manipulating their
real and imaginary parts. However, the change of the FFT
algorithm, from in-order input to in-order output, resulted in
apparent simplification of the permutation logic. This logic,
generates the index of the base coefficient, which is fetched
from the ROM memory, and latter modified by six different
combinations of the exchange, addition, or subtraction oper-
ations. The simplified logic of the unit shorten the critical
path for the whole processor. It was one of the optimizations
which allowed to synthesize the new processor at significantly
higher operating frequency, namely 400MHz compared to
250MHz in [4].

C. Mixed-radix-4/2 Butterfly Unit and Complex Adder

Mixed-radix-4/2 Butterfly Unit and Complex Adder SFUs
are exactly the same like in [4], [5]. They implement the
arithmetics of the complex numbers, addition and multiplica-
tion respectively.

D. Radix-3 Operand Access Generator

As explained in Section 4.2, the chosen FFT algorithm al-
lowed to simplify the implementation of the processor . The
radix-3 stage is executed at the very end of the computations,
where all the samples are already in-order. This makes the
implementation of the Radix-3 Operand Access Generator
straightforward. For the 1536 − point FFT, indexes of the
input samples to each radix-3 butterfly, are always separated
by 512, e.g., 0, 512, 1024; 1, 513, 1025 etc. If we gener-
ate the index for the first sample with a linear up-counter,
the remaining two indexes can be calculated by bitwise OR
operation with 512 and 1024, for 2nd and 3rd input sample

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

242

+

-

+ +

+ +
-

+

+

+

+

+x
r

x
r+N/3

X
r

X
r+N/3

X
r+2N/3

W
N

r

x
r+2N/3

W
N

2r

Re{W
N

N/3}

i*Im{W
N

N/3}

Fig. 2. Signal flow graph of the modified radix-3 butter-
fly [17].

respectively.

E. Radix-3 Twiddle Factor Generator

The implementation of the Radix-3 Twiddle Factor Generator
follows the same principles applied to the Mixed-radix-4/2
Twiddle Factor Generator discussed earlier. The biggest dif-
ference occurs in the input logic, which generates the index
of the coefficient to be fetched from the ROM memory. Each
radix-3 butterfly requires two TFs. For the in-order output
FFT, the index of the 1st TF can be generated with the linear
up-counter, while the 2nd index of the same butterfly is the
1st one multiplied by 2. On the bit-level, the multiplication
by 2 can be substituted by a left shift . The unit requires also
a number of 193 coefficients stored to the ROM memory.

F. Radix-3 Butterfly Unit

The Radix-3 Butterfly Unit implements the algorithm for FFT
radix-3 butterfly computations as in [17]. Fig. 2 presents the
signal flow graph of the computations. Compared to the clas-
sic radix-3 butterfly implementation the number of arithmetic
operations has been reduced from 6 complex multiplications
to 2 complex and 2 real multiplications by a constant. The
number of complex additions equals 6 in both cases.

G. General Organization of the Processor

The general organization of the proposed TTA processor
for mixed-radix-4/2/3 FFT computations is shown in Fig. 4.
The processor is composed of 12 separate FUs and a total of
16 RFs containing 25, 32-bit general-purpose registers and 6
Boolean registers. The FUs and RFs are connected by an IC
consisting of 25 buses, compared to 23 that the mixed-radix-
4/2 design has. The number of connecting sockets has been
hand-optimized down to 111. In addition, the processor has a
control unit, instruction memory, and 32-bit, dual-ported data
memory. The size of the data memory is limited by the size
of the maximum FFT to be supported by the processor, in our
case, 2048 + 1. The last word holds the size of the FFT to be
computed.

The in-order FFT algorithm applied in our design implies

main() {
initialization(); /* 10 to 35 instructions */
if (fftSize == 1536) {
for (iter = 0; iter < 3; iter++) {
radix42_prologue(); /* 14 instr. */
for (idx = 0; idx < 512; idx++)
radix42_kernel(); /* 16 instr. */

radix42_epilog(); /* 15 instr. */
}
radix3_prologue(); /* 12 instr. */
for (idx = 0; idx < 1536; idx++)
radix3_kernel(); /* 12 instr. */

radix3_epilogue; /* 12 instr. */
} else {
radix42_prologue(); /* 14 instr. */
for (idx = 0; idx < (Nlog_4N)/16 - 1; idx++)
radix42_kernel(); /* 16 instr. */

radix42_epilog(); /* 15 instr. */
}

}

Fig. 3. Pseudo code illustrating structure and control flow of
the program.

the need for a permutation of the input samples, so that, the
correct results are produced. In case of the power-of-two
FFTs only permutation is required. For the 1536 − point
FFT initial decomposition, into 3 sets, comprising every 3rd
sample, is needed. Those operations should be taken into
account when integrating our design into the system with a
source of samples, and the sink for results. Integration details
remain beyond the scope of this paper.

H. Instruction Schedule

Traditionally, the kernel of the FFT algorithm is implemented
with three nested loops. We use a different approach, where
the Twiddle Factor Generators, as well as, the Operand Ac-
cess Generators use a single up-counter and a FFT size stored
in a register, to fetch and calculate correct operands. This
results in a single for loop implementation for power-of-two
FFTs, as shown in the “else” branch of the pseudo code in
Fig. 3. Calculating 1536 − point FFT requires two con-
secutive for loops, as illustrated in the “if” branch of the
pseudo code in Fig. 3. The first one computes 3 times a
512 − point mixed-radix-4/2 FFT on 3 sets of data, decom-
posed as explained in the previous paragraph. Subsequently,
a radix-3 FFT is calculated on all 1536 samples producing a
final result. The software implementation is a hand-optimized
TTA-assembly code, which exploits both, the instruction level
parallelism, and the software pipelining.

5. PERFORMANCE ANALYSIS

In order to evaluate our processor, we implemented all SFUs
from Section 4.2 in hand-written VHDL. The structural de-
scription of the processor core was obtained with PRODE,

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

243

24 32-bit buses, one 1-bit bus

CMUL

RADIX-42

TF

GEN

RADIX-3

TF

GEN

RADIX-42

OPADDR

GEN

RADIX-3

OPADDR

GEN

RADIX-42

BTFLY

RADIX-3

BTFLY
ADD SHIFT

LOGIC

ARITH
COMPLSU 1 GCULSU 2

RF 1 RF 2 RF 3 RF 4 RF 5 RF 6 RF 7 RF 8 RF 9 RF 10 RF 11 RF 12 RF 13 RF 14 RF 15 RF 16 RF 17

IMEMMUX&CTRL

DMEM DMEM

Fig. 4. Block diagram of the proposed FFT processor. DMEM: data memory. IMEM: instruction memory. LSU: load-store
unit. TF GEN: twiddle factor generator. OPADDR GEN: operand address generator. CMUL: complex multiplier. RADIX-
42 BTFLY: complex adder. RADIX-3 BTFLY: radix-3 butterfly calculation unit. ADD: adder. LOGIC ARITH: logical unit.
SHIFT: shifter. CMP: compare unit. GCU: control unit. RF: register file.

Table 1. Characteristics of the proposed processor synthe-
sized on 130 nm ASIC technology (mixed-radix-4/2/3) versus
design presented in [5] (mixed-radix-4/2).

mixed-radix-4/2 mixed-radix-4/2/3
supported FFT sizes 64− 16384 128− 2048/1536

cycle count 207− 114722 544− 12335
execution time 828ns− 459µs 1.3− 30.8µs

@250MHz @400MHz
max. clock freq. 250MHz 400MHz

Area [kgates]
Core 38 46
Imem 2 3
Dmem 240 60
Total 280 109

1024-point FFT
cycle count 5160 5180

1536-point FFT
cycle count N/A 9324

2048-point FFT
cycle count 12332 12345

a VHDL description generator from the TCE toolchain [2].
From the same toolchain, PROXIM, an instruction accurate
simulator, was used to measure the number of clock cycles the
program execution takes. Complete VHDL description of the
processor design was then synthesized to a 130 nm standard
cell CMOS technology with Synopsys Design Compiler. Gate
level simulation was performed at 400 MHz. The obtained
results are compared in Table 1 to design in [5]. As can be
seen, the proposed design is more than twice smaller than the
previous design , while it supports FFT of size 1536 in addi-
tion to FFTs of sizes being powers-of-two. At the same time,
the proposed design may be clocked at approximately 1.6
times higher maximum frequency and it uses approximately
the same number of clock cycles as the previous design for
implementation of FFTs of equal sizes. Thus, faster FFT im-
plementations on a smaller device is achieved. The processor

operates in a pipelined fashion, i.e. different FUs process dif-
ferent samples from the same computational set, in the par-
ticular clock cycle. This is possible due to the TTA architec-
ture, which exposes data transfers on the processor buses to
the software designer. The processor does not have a fixed
pipeline, typical to other architectures, rather the programmer
(or compiler) can create a pipeline by scheduling data trans-
fers in a particular manner. Hand-optimized assembly code
guarantees throughput of 1 sample/clock cycle (s/cc), after
latency of several cycles, needed to fill the pipeline in. The
latency varies from one FFT size to another but does not ex-
ceed 57 cycles. For instance, the theoretical throughput of 1
s/cc for mixed-radix-4/2 2048− point FFT, with five radix-4
stages, and 1 radix-2 stage is 2048 ∗ 6 = 12288 cc. Our pro-
cessor requires only 57 cycles more, which is the maximum
latency for FFT computations with this design.

6. CONCLUSIONS

In this paper, a programmable HW/SW co-design of a FFT
processor is proposed. The design, based on a TTA proces-
sor template, has been customized for the FFT computations,
having in mind especially FFT sizes required by the LTE ap-
plications. A set of hand-optimized special function units was
designed . The processor supports power-of-two FFT sizes in
the range 128−2048 and the 1536-point FFT. The latter one is
obtain with the added support for radix-3 FFT computations.

The processor was synthesized on a 130 nm ASIC tech-
nology . Timing, and area analysis showed that the proposed
design features higher performance. The proposed design
is more than twice smaller the previous design, it supports
1536 − point FFT, and can be clocked at approximately
1.6 times higher maximum frequency. The hand-optimized
assembly code allows to execute computations in pipelined
fashion with throughput of 1 sample/clock cycle after a small
number of clock cycles required to fill the pipeline in.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

244

Future work will include adding the radix-5 support, as
well as, expanding the range of computable FFT-sizes to other
than 1536, sizes divisible by 3.The power-efficiency analysis
and optimization shall also be done.

7. REFERENCES

[1] H. Corporal, Microprocessor Architectures: From VLIW to
TTA, John Wiley & Sons, Chichester, UK, 1997.

[2] “TTA-based co-design environment (TCE),”
http://tce.cs.tut.fi/.

[3] J.W. Cooley and J.W. Tukey, “An algorithm for the ma-
chine calculation of complex Fourier series,” Mathemat-
ics of Computation, vol. 19, pp. 297–301, April 1965.

[4] T. Pitkänen and J. Takala, “Low-power application-
specific processor for FFT computations,” in Proceedings
of IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP-2009), Taipei, Taiwan, April 2009, pp. 593 – 596.

[5] T. Pitkänen, R. Mäkinen, J. Heikkinen, T. Partunen, and
J. Takala, “Transport triggered architecture processor
for mixed-radix FFT,” in Conf. Record Asilomar Conf. Sig-
nals, Syst. Comput., Pacific Grove, CA, Oct. 2006, pp. 84–
88.

[6] Ch.-H.Yang, T.-H. Yu, and D. Marković, “Power and
area minimization of redonfigurable FFT processors: a
3GPP-LTE example,” IEEE Journal od Solid-State Circuits,
vol. 47, no. 3, pp. 757–768, March 2011.

[7] G. Yang and Y. Jung, “Scalable FFT processor for
MIMO-OFDM based SDR systems,” in Proceedings of
5th Int. Symp. on Wireless Pervasive Computing (ISWPC),
Modena, Italy, May 2010, pp. 517–521.

[8] A. Karachalios, K. Nakos, D. Reisis, and H. Alnuweiri,
“A new FFT architecture for 4× 4 MIMO-OFDMA sys-
tems with variable symbol length,” in Proceedings of
the 6th Int. Conf. on Innovations in information technology
IIT’09,, Dec. 2009, pp. 1–5.

[9] R. Pandey and M.L. Bushnell, “Architecture for
variable-length combined FFT, DCT, and MWT trans-
form hardware for a multi-modewireless system,” in
Proceedings of IEEE Int. Conf. on VLSI Design held jointly
with 6th Int. Conf. on Embedded Systems, Bangalore, India,
January 2007, pp. 121–126.

[10] S.-Y. Peng, K.T. Shr, Ch.-M. Chen, and Huang Y.-H.,
“Energy efficientt 128 ∼ 2048/1536− point FFT pro-
cessor with resource block mapping for 3GPP-LTE sys-
tem,” in Proceedings of IEEE Int. Conf. on Green Circuits
and Systems (ICGCS), June 2010, pp. 14–17.

[11] N.K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith,
and J. Manferdelli, “High performance discrete Fourier
transforms on graphics processors,” in Proceedings of
IEEE Int. Conf. on High Performance Computing, Network-
ing, Storage and Analysis (SC-2008), Austin, Texas, USA,
Nov. 2008, pp. 1–12.

[12] V. Volkov and B. Kazian, “Fitting FFT onto the G80
architecture,” in CS 258 final project report,. 2008, Uni-
versity of California, Berkeley.

[13] “The 3rd generation partnership project (3GPP),”
http://www.3gpp.org/lte/.

[14] A. Ahtiainen, H. Berg, U. Lcking, A. Pärssinen, and
J. Westmeijer, “Architecting software radio,” in Pro-
ceedings of the SDR 07 Technical Conference and product Ex-
position, 2007.

[15] H. V. Henderson and S. R. Searle, “The vec-permutation
matrix, the vec operator and kronecker products: A re-
view,” Linear and Multilinear Algebra, vol. 9, no. 4, pp.
271–288, 1981.

[16] L. Wanhammer, DSP integrated circuits, Academic Press
series in engineering. Academic Press, San Diego, CA,
1999.

[17] T. Mateer, Fast Fourier Transform algorithms with applica-
tions, ProQuest, UMI Dissertation Publishing, 2011.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

245

